Quercitrin-nanocoated titanium surfaces favour gingival cells against oral bacteria
نویسندگان
چکیده
Many dental implants fail due to the infection and inflammation that walk hand in hand with poor healing and soft tissue integration. Titanium surfaces were nanocoated with quercitrin, a natural flavonoid, with the aim to improve soft tissue integration and increase dental implants success. Streptococcus mutans attachment and biofilm formation was analysed. Then, the anti-inflammatory properties and the potential of quercitrin-nanocoated surfaces to boost soft tissue regeneration were tested using human gingival fibroblasts. An inflammatory situation was mimicked using interleulin-1-beta. We found that quercitrin-nanocoated surfaces decreased initial bacterial adhesion while increasing human gingival fibroblasts attachment. Furthermore, quercitrin-nanocoated Ti increased collagen mRNA levels and decreased matrix metalloproteinase-1/tissue inhibitor of metalloproteinanse-1 mRNA ratio, which is related to a reduced metalloproteinase-mediated collagen degradation, while also decreasing the pro-inflammatory prostaglandin E2 release under basal and inflammatory conditions. These results suggest that quercitrin-nanocoated surfaces could enhance the soft tissue integration and increase dental implants success.
منابع مشابه
Adherence of human oral keratinocytes and gingival fibroblasts to nano-structured titanium surfaces
BACKGROUND A key element for long-term success of dental implants is integration of the implant surface with the surrounding host tissues. Modification of titanium implant surfaces can enhance osteoblast activity but their effects on soft-tissue cells are unclear. Adherence of human keratinocytes and gingival fibroblasts to control commercially pure titanium (CpTi) and two surfaces prepared by ...
متن کاملAdherence of human oral keratinocytes and gingival fibroblasts to nano-structured titanium surfaces - 1472-6831-14-75
Background: A key element for long-term success of dental implants is integration of the implant surface with the surrounding host tissues. Modification of titanium implant surfaces can enhance osteoblast activity but their effects on soft-tissue cells are unclear. Adherence of human keratinocytes and gingival fibroblasts to control commercially pure titanium (CpTi) and two surfaces prepared by...
متن کاملThe response of human osteoblasts, epithelial cells, fibroblasts, macrophages and oral bacteria to nanostructured titanium surfaces: a systematic study
Nanotopography modification is a major focus of interest in current titanium surface design; however, the influence of the nanostructured surface on human cell/bacterium behavior has rarely been systematically evaluated. In this study, a homogeneous nanofiber structure was prepared on a titanium surface (Nano) by alkali-hydrothermal treatment, and the effects of this Nano surface on the behavio...
متن کاملSoft tissue integration versus early biofilm formation on different dental implant materials.
OBJECTIVE Dental implants anchor in bone through a tight fit and osseo-integratable properties of the implant surfaces, while a protective soft tissue seal around the implants neck is needed to prevent bacterial destruction of the bone-implant interface. This tissue seal needs to form in the unsterile, oral environment. We aim to identify surface properties of dental implant materials (titanium...
متن کاملInvestigation of biomaterials by human epithelial gingiva cells: an in vitro study
INTRODUCTION In modern medicine and dentistry the use of biomaterials is a fast developing field of increasing interest. Especially in dentistry the interaction between biomaterials like implant materials and the soft tissue in the oral cavity is in the focus of daily research. In this context the high importance of testing materials and their surfaces concerning their biocompatibility towards ...
متن کامل